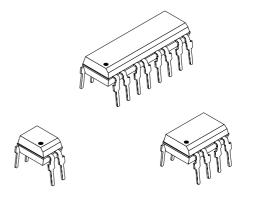


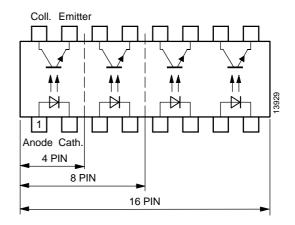
Optocoupler with Phototransistor Output

Description

The K817P/ K827PH/ K847PH consist of a photo-transistor optically coupled to a gallium arsenide infrared-emitting diode in an 4-lead up to 16 lead plastic dual inline package.


The elements are mounted on one leadframe using a **coplanar technique**, providing a fixed distance between input and output for highest safety requirements.

Applications


Programmable logic controllers, modems, answering machines, general applications

Features

- Endstackable to 2.54 mm (0.1") spacing
- DC isolation test voltage V_{IO} = 5 kV
- Low coupling capacitance of typical 0.3 pF
- Current Transfer Ratio (CTR) selected into groups
- Low temperature coefficient of CTR
- Wide ambient temperature range
- Underwriters Laboratory (UL) 1577 recognized, file number E-76222
- CSA (C-UL) 1577 recognized, file number E- 76222 Double Protection
- Coupling System U

14925

Order Instruction

Ordering Code	CTR Ranking	Remarks
K817P	50 to 600%	4 Pin = Single channel
K827PH	50 to 600%	8 Pin = Dual channel
K847PH	50 to 600%	16 Pin = Quad channel
K817P1	40 to 80%	4 Pin = Single channel
K817P2	63 to 125%	4 Pin = Single channel
K817P3	100 to 200%	4 Pin = Single channel
K817P4	160 to 320%	4 Pin = Single channel
K817P5	50 to 150%	4 Pin = Single channel
K817P6	100 to 300%	4 Pin = Single channel
K817P7	80 to 160%	4 Pin = Single channel
K817P8	130 to 260%	4 Pin = Single channel
K817P9	200 to 400%	4 Pin = Single channel

Vishay Semiconductors

Absolute Maximum Ratings

Input (Emitter)

Parameter	Test Conditions	Symbol	Value	Unit
Reverse voltage		V _R	6	V
Forward current		l _F	60	mA
Forward surge current	$t_p \le 10 \mu s$	I _{FSM}	1.5	Α
Power dissipation	$T_{amb} \leq 25$ °C	P _V	100	mW
Junction temperature		T _i	125	°C

Output (Detector)

Parameter	Test Conditions	Symbol	Value	Unit
Collector emitter voltage		V _{CEO}	70	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		I _C	50	mA
Peak collector current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA
Power dissipation	$T_{amb} \leq 25$ °C	P _V	150	mW
Junction temperature		T _i	125	°C

Coupler

Parameter	Test Conditions	Symbol	Value	Unit		
AC isolation test voltage (RMS)	t = 1 min	V _{IO} 1)	5	kV		
Total power dissipation	$T_{amb} \le 25^{\circ}C$	P _{tot}	250	mW		
Operating ambient temperature		T _{amb}	-40 to +100	°C		
range						
Storage temperature range		T _{stq}	-55 to +125	°C		
Soldering temperature	2 mm from case, t \leq 10 s	T _{sd}	260	°C		
1) Related to standard climate 23/50 DIN 50014						

Vishay Semiconductors

Electrical Characteristics (T_{amb} = 25°C)

Input (Emitter)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Forward voltage	I _F = 50 mA	V_{F}		1.25	1.6	V
Junction capacitance	$V_R = 0 V, f = 1 MHz$	Ci		50		pF

Output (Detector)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Collector emitter voltage	$I_C = 100 \mu A$	V_{CEO}	70			V
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V
Collector dark current	$V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	I _{CEO}			100	nA

Coupler

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}			0.3	V
Cut-off frequency	I_F = 10 mA, V_{CE} = 5 V, R_L = 100 Ω	f _c		100		kHz
Coupling capacitance	f = 1 MHz	C _k		0.3		pF

Current Transfer Ratio (CTR)

Parameter	Test Conditions	Туре	Symbol	Min.	Тур.	Max.	Unit
I _C /I _F	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K817P	CTR	0.5		6.0	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K827PH	CTR	0.5		6.0	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K847PH	CTR	0.5		6.0	
	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	K817P1	CTR	0.4		0.8	
	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	K817P2	CTR	0.63		1.25	
	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	K817P3	CTR	1.0		2.0	
	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	K817P4	CTR	1.6		3.2	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K817P5	CTR	0.5		1.5	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K817P6	CTR	1.0		3.0	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K817P7	CTR	8.0		1.6	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K817P8	CTR	1.3		2.6	
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	K817P9	CTR	2.0		4.0	

Switching Characteristics

Parameter	Test Conditions	Symbol	Тур.	Unit
Delay time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega \text{ (see figure 1)}$	t _d	3.0	μs
Rise time		t _r	3.0	μs
Fall time		t _f	4.7	μs
Storage time		ts	0.3	μs
Turn-on time		t _{on}	6.0	μs
Turn-off time		t _{off}	5.0	μs
Turn-on time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega \text{ (see figure 2)}$	t _{on}	9.0	μs
Turn-off time		t _{off}	18.0	μs

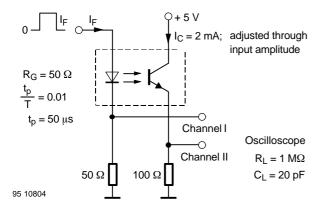


Figure 1. Test circuit, non-saturated operation

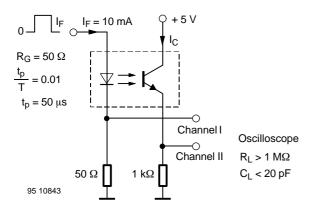


Figure 2. Test circuit, saturated operation

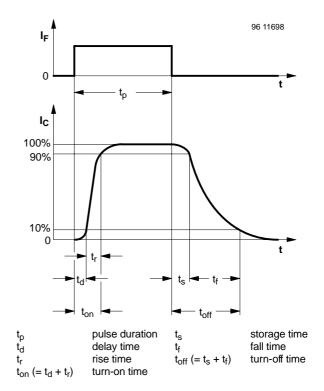


Figure 3. Switching times

Typical Characteristics (T_{amb} = 25°C, unless otherwise specified)

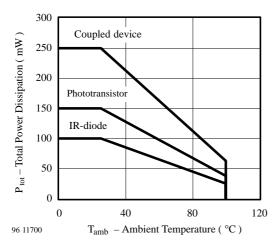


Figure 4. Total Power Dissipation vs. Ambient Temperature

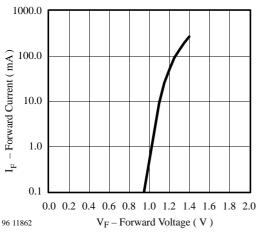


Figure 5. Forward Current vs. Forward Voltage

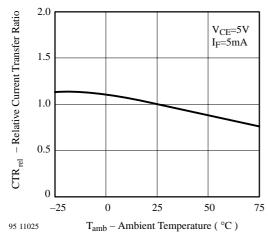


Figure 6. Relative Current Transfer Ratio vs.
Ambient Temperature

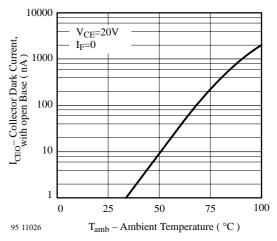


Figure 7. Collector Dark Current vs. Ambient Temperature

Figure 8. Collector Current vs. Forward Current

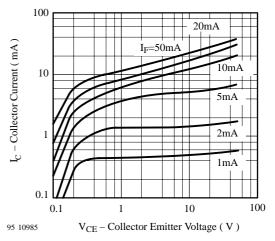


Figure 9. Collector Current vs. Collector Emitter Voltage

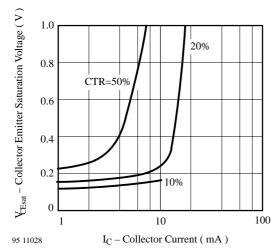


Figure 10. Collector Emitter Saturation Voltage vs.
Collector Current

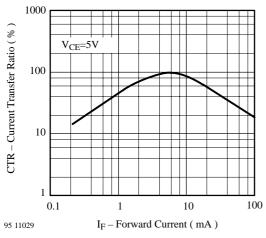


Figure 11. Current Transfer Ratio vs. Forward Current

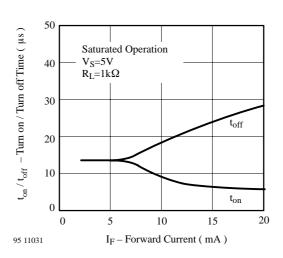


Figure 12. Turn on / off Time vs. Forward Current

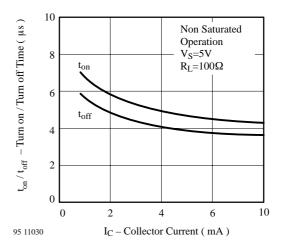


Figure 13. Turn on / off Time vs. Collector Current

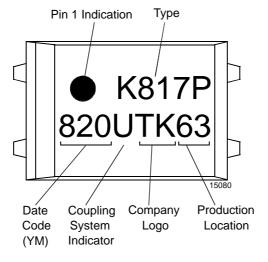
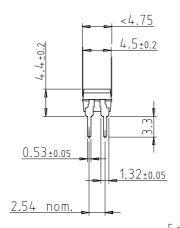
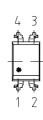
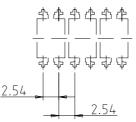



Figure 14. Marking example



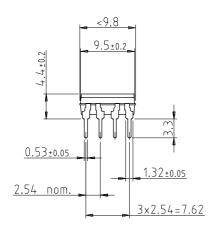
Dimensions of K817P. in mm



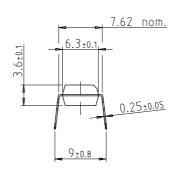
7.62 nom. 6.3±0.1 3.6±0.1 0.25±0.05 9±0.8

> weight : ca 0.25q creepage distance : > 6mm air path : after mounting on PC board

E.q.: special Features: endstackable to 2.54mm (.100") spacing


technical drawing according to DIN specifications

14789


Dimensions of K827PH in mm

Drawing-No.: 6.544-5302.03-4

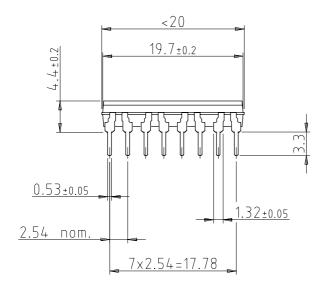
Issue: 4; 02.06.99

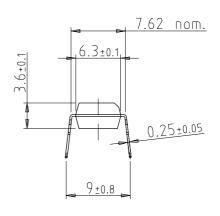
8 7 6 5

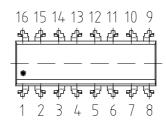
Issue: 4; 02.06.99

<u>ቁቀቁ</u> Drawing-No.: 6.544-5302.02-4 2 3 4

weight: ca 0.55g creepage distance : > 6mm air path : after mounting on PC board


technical drawings according to DIN specifications


14784


Vishay Semiconductors

Dimensions of K847PH in mm

weight: ca 1.08g creepage distance: > 6mm air path: > 6mm after mounting on PC board

> technical drawings according to DIN specifications

Drawing-No.: 6.544-5302.01-4

Issue: 4; 02.06.99

14783

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83522 www.vishay.com
Rev. A3, 04–Sep–01 9 (9)